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Abstract

This note describes the algorithm used in the new reway.

1 Overview

Recently I modified reway and weigh into a single program called reway. The purpose
of reway and weigh is to add noise to the observations to make the overall y? = 1.
Reway does this by adding the same amount of noise to each observation. Weigh
does it by adding the same amount of noise to each observation of a baseline. The
new reway combines these two options and adds a third: you can now add the same
amount of noise to all observations involving a given station. I refer to these three
modes as global, station and baseline reweighing. This note describes the algorithms
used in new reway, as well as some problems encountered in getting it to work, and
how they were overcome or sidestepped.

The starting point of the algorithm is the assumption that if we take some subset
S of all the observations, and compute the correct reduced x?% of this subset, we
expect to get 1. What do I mean by the correct x4? I mean
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Here ng 4,5 are the number of degrees of freedom in this subset, o;is the pre-fit sigma,
and A, is the post-fit residual. I had originally assumed that
NSdof = Ns,obs X Scale (2)

where ng .5 are the number of observations in this subset, and scale is some scaling
factor independent of the subset. I arrived at the value of scale by considering y2over
the whole set of observations:
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here nys is the number of observations used in the solution, nperem the number
of parameters, n.,, the contribution of the constraints (called arc_share in solve).
Motivated by this expression, I tried using
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which I will refer to as the “naive” degrees of freedom. This leads to:
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This had some problems, which are described below. Subsequently I used a value
for ng 4,y which is calculated based on the post fit residuals and their sigmas. The
calculation of this is described in another memo.

The strategy of reway is the following. Given some solution, and some partitioning
of the observations we try to adjusts the o’s based on this partitioning so that % = 1
for each partition. For global, station, and baseline weighting, respectively, we make
the following adjustments:
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where g labels the global weight, a,b label the station and bl labels the baseline. I
will refer to the weights generically as 5.

In the case of global or baseline weighting, for a given solution there is at most a
single unique choice of 0% such that x% = 1. To see, note first off that in the baseline
case, changing one baseline weight will not effect the x% of another baseline. Hence
the separate baselines decouple. If we set the weight of a given baseline to 0, its x%
will be at a maximum. Assume that x%(os = 0) > 1. If this is not the case, there is
no way to make x% = 1. As we increase the value of the weights, we decrease the value
of the x%. With a large enough choice of the weights, we can make the % vanish.
Since x% is a continuous function of 6% we must have x% = 1 for some intermediate
value.

For station based weighting the situation is not quite as clear, because each obser-
vation has a contribution from two stations. I do not know if you can always choose



weights so that 2 = 1, or for that matter if the choice of weights is unique. In fact,
with the algorithm I am using now there are a few cases in station weighting where
I do not find a solution with all the x% = 1.

My approach to the problem of coming up with a set of weights such that x? =
1 was to recast it in terms of a minimization problem. That is, to construct a function
which depended on the weights, and when minimized would guarantee that all of the
X2 would be (close to) 1. Explicitly:

F = F(oy) (7)

F = minimum = y? =1

The function F' is called the objective function.The choice of F' is far from unique.
For example, if F'is such a function, so is F". A large part of the work was coming
up with a suitable F', and this is described in the second part of this note.

Once the problem is formulated as a minimization problem there are many routines
one can use to find the minimum. I used routines from Numerical Recipes. To use
these routines you must write subroutines that compute F' and its gradient.

The weights found which minimize the objective function are with respect to a
some particular solve solution. However, since the weights determine how much an
observation effects the estimates of the parameters, we need to re-run the solution.
After the solution is rerun, the residuals will change, and there is no guarantee that
we will still have x4 = 1. So the strategy is to find weights, run a solution, find new
weights to this solution, and so on until the situation converges. I found experimen-
tally that after about 3-5 iterations , x? of the solution as a whole stops changing,
and approaches 1.00010.003.

An auxiliary goal in coming up with a combined routine was to use the slots which
are already present in solve. Since solve has slots for the baseline weights, I used these.
Global weights and station weights are special cases of baseline weights. On entry
to reway the routine examines the weights to determine which kind of weighting we
are doing: if all of the weights are the same then we are doing global weights. If the
weights can be represented as station weights, than it assumes that is what we are
doing. This does not effect how the weights are applied. It only effects the allowed
changes we can make to the weights, or alternatively, how the data is partitioned.

2 Search for an Objective Function

In this section I describe some of the objective functions I used and why they were
discarded.

My first choice of objective function was:

Fo=Y (- 1) (®)
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which has the properties listed in equation (7). This was many months before I had
even head the phrase “a posteriori sigmas”, and so I used the naive formula for the
degrees of freedom given by equation (4). Originally I minimized this with respect to
0% which I treated as a single value: In varying Iy I would vary 0%; in computing the

gradient of Fy which is used in the minimization routine I would compute 85()—59—). One
S

consequence of this is that sometimes 0% would end up negative, implying that og was

imaginary. Whether or not it is reasonable to subtract noise from the measurements
one had the problem that solve expected o5 to be a real number. Therefore the first fix
I made was to minimize the objective function with respect to og. This automatically
ensures that 0% is positive. For many databases this worked.

One problem with equation (8) is that it is symmetric about og = 0: if +0g is
a minimum, so is —og. Also, the minimization routine uses the gradient of Fy to
choose the direction it searches. Since Fy is symmetric, the gradient vanishes at 0.
For this choice of weights the routine would stall. To make negative values for the
weights forbidden, and to remove the symmetry, I modified equation (8) to:
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I tried different values for «, but ultimately settled on o« = 10. The last term tends
to make Fj large for negative values of the weights, but is ignorable if the weights are
positive.

Again, this worked for most databases. However I found that I would sometimes
get into a situation where some of the weights would become very large and
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The routine would stop converging with some of the x% = 0! My first approach at
preventing this from happening was to put in hard ceiling limits. I would not allow
any of the delay weights to go above 300 ps, or the rate ways above 1000 fs/s. However
in some pathological cases the algorithm would stall as the weights beat against this
limit. Rather than put in hard limits, I then modified the objective function to:

B=> (X% — 1/X§)2 + ) exp—ao, (11)
S S

This modification has the property that if the weights get too large, the new search
direction, which is determined in part by the gradient, points back to lower values of
the weights. This is essentially the objective function used in solve in the first big
tests which completed successfully.. The baseline scatter in the solutions that used
these weights was smaller than the standard solve solution, indicating that we were
doing something right.

In a statistical analysis of the station weights generated in this large test C. Ma
found that 1/3 of the databases had two stations with station weights under 2 ps.
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After discussions with E. Himwhich I became convinced that the reason for this might
be due to using the incorrect degrees of freedom in the calculation of the x%. In some
sense, my initial assumption was that the influence an observation has depends only
on its formal errors, and so the expected residual of a given observation depends only
its formal errors, scaled by the reduction in the overall degrees of freedom. Actually
as pointed out by E. Himwich, some observations effect the solution more strongly
than others. As a consequence the residuals of these observations will be smaller.
Suppose one of the reway subsets has a lot of these observations. Then we have the
following viscous circle:

1. Residuals of this sub-set are too small.
2. Reway thinks the weights are too large.
3. Weights are reduced, and a solution is run.

4. Repeat until weights go to 0.

When I changed to using the correct degrees of freedom, I found that these prob-
lems went away, or were much improved.

As of the time this note is being written, the last problem was that for some
databases it appeared impossible to make x% = 1 for all of the stations. The algorithm
would continue to find a minimum of F. However, at this minimum x? of the solution
as a whole might be significantly different from 1. In some cases it differed by as much
as 30%. On closer examinations it appeared that most of these involved experiments
where one station or baseline appeared much less frequently then the others. As it
stands [y treats all of the subsets equally, even those with only a few observations.
Intuitively it makes sense that sets with more observations should be important than
those with only a few. This lead to the current form of the objective function given

by:
F =" ngaor (X% — 1/><§)2 +> _exp—ao, (12)
S S

With this version of the objective function the maximum the maximum deviation of
x2of the whole solution from 1.00 is about 1-2%.



